Water Supply and Flood Forecasting with Climate Change

Michael Anderson, PhD
California Department of Water Resources
Division of Flood Management

Acknowledgments

Thanks to David Rizzardo, Matt Winston, Boone Lek, BG Heiland, Tawnly Pranger, Aaron Miller, Maury Roos, John King, and Steve Nemeth of DWR-DFM and Jamie Anderson of DWR Delta Modeling.

Presentation Outline

- Introduction
- Historical Trends
- Climate Change Information
- Impacts
- Future Work

Marsh/Delta/Bypass flyover 1/4/06

How much of the New Year's flooding was due to climate change?

Photo by Ralph Finch

Introduction

- Climate vs. Weather Climate is what you expect and weather is what you get
- Global Circulation Models aim to predict climate change
- Individual weather events may vary greatly
- New Year's event within historical observed variability

Introduction

- Climate Change impacts of note for flood/water supply forecasting:
 - Temperature
 - Precipitation type (snow vs. rain)
 - Seasonal shifts in precipitation or snowmelt
- Examine historical record for trends
- Look at climate change data for possible future scenarios

Historical Trends - Temperature

Statewide average observed warming of about 0.5 °C (1 °F)

Historical Trends Precipitation

Slight Increase in statewide average precipitation

Changes in Peak Runoff Statistics

Pre/Post 1955	Feather	Tuolumne	Eel
Mean	42/52	12/17	93/123
Standard Deviation	33/50	11/19	48/84
Range	145/232	52/91	165/489

Sacramento River System

Sacramento River System

San Joaquin River System

San Joaquin River System

A look ahead...

Climate change model data from GCMs statistically downscaled over California

Projected Changes Temperature

Some Uncertainty From Dettinger, 2005

Projected Changes Precipitation

Analysis of Projected Changes

- There is less variability in air temperature projections vs. precipitation projections
- GCMs need refinement before flood/ drought frequency analysis appropriate
- Analysis focuses on impacts of potential temperature changes

Snowpack Reduction Impacts

- A 3° C increase could result in a 33% decrease in Sierra Nevada snowpack (~5 MAF loss in snow water storage)
- North more sensitive to change than south
- Feather basin snowpack area decreases from 72% to 20% for a 3° C warming and to 2% for a 5° C warming

Snowpack Reduction Impacts

Storm Runoff Impacts

Present Conditions

Increased Air Temperature

Storm Runoff Impacts

Higher snow levels yield more direct runoff per storm

Water Supply/Flood Forecasting Issues

- Will climate change move snowmelt into the March transition period?
- Will there be more/fewer storms?
- Will the character of storms change and how will that affect forecasting?

Future Directions

- Continue analysis of historical data
- Evaluate new GCM data as available
- Study flood producing atmospheric circulations (historical and GCM data)
- Determine probability of occurrence of potential impacts
- Identify mitigation measures

